
FIXMPTS
---- 405
360↑10

⦁

R1

RX

Document ID: FixMPTS-AsterixLib-ADD

Version 0.1

August 2021

Revision History

Name Date Reason For Change Version

F. Kreuter 01.08.2021 Initial Version V 0.1

Contents

1 Purpose 1
1.1 Principles . 1

2 References 1

3 Aprivations 1

4 Functional Overview 2
4.1 Asterix Category Level . 2
4.2 Asterix Item Level . 2
4.3 Asterix Sub-Item Level . 3
4.4 Sub-Item Converter Functions . 3

4.4.1 Common Converter . 4
4.4.2 Double Converter . 4
4.4.3 Unsigned Double Converter . 4
4.4.4 Integer Converter . 5
4.4.5 String Converter . 5

3

Asterix Library Document ID: FixMPTS-AsterixLib-ADD

1 Purpose

The aim of this document is to highlight the architectural design of the FixMPTS Aterix Library. It is intended for developers
who want to make use of the library in their respective project and for those who plan to contribute or enhance the library
as such. This document shall give only an overview. For a more in-depth understanding please refer to the introductory
document which also contains some examples.

The document is split into two parts. The first focuses on the architectural design on the level of Asterix Categories,
where as the second part will go into the design within the individual Asterix Categories.

1.1 Principles

To achieve a high level of compatibility the library is designed with as little usage of external resources as possible. Thus
where ever possible it depends only on the C++ standard library.

2 References

List of documents this ADD has references to.

[1] Eurocontrol EUROCONTROL Specification for Surveillance Data Exchange -Part 1.
[All Purpose Structured EUROCONTROL Surveillance Information Exchange(ASTERIX)]
Edition 3.0, 07/12/2020, DocID: EUROCONTROL-SPEC-0149

Page 1 Version: 0.1

Asterix Library Document ID: FixMPTS-AsterixLib-ADD

3 Functional Overview

In the following chapters the different architectural aspects of the library will be highlighted.

3.1 Asterix Category Level

The main task for the Asterix Category class would be to encode and decode the individual messages. To make this statement
the common base class to all Asterix Categories already provides those methods. This does not mean that this is all there
is. The individual child classes are free and do implement convenience methods. This is, as only those child classes know
the best data type to process it and therefore it is left to them to decide which other encode or decode method they want to
provide.

In order to add processing of a new Asterix Category or a new version of an existing category, it is foreseen to either
inherit from the Asterix Base class or the individual child class, which needs enhancement. This approach ensures tha any
extension of the library is backward compatible and integrates seamlessly into existing applications.

The currently available structure of the Asterix Categories is visible in Fig. 1. For the child classes the diagram will only
show those functions and attributes not inherited and those the author thought would carry a significant importance.

AsterixCategory

#fspec:map(int, bool)
#uap:UAP t
#unrolled values:map(string, string)

AsterixCategory()
#initCategory():void
#setUAP():void
setSubitems():void
readFspec():bool
fillRecord():void
decode():void
encode():vector(char)

printMessage():void

Limited to the im-
portant member
and functions with
attributes being
discarded from the
function signature.

Limited to the im-
portant member
and functions with
attributes being
discarded from the
function signature.

AsterixCategory001

AsterixCategory001()

Only not inherited
items are mentioned
Only not inherited
items are mentioned

AsterixCategoryAAA

AsterixCategoryAAA()

This class stands for
Categories 001 till
061

This class stands for
Categories 001 till
061

AsterixCategory062

non track related values:map(string,unsigned char)
service related values:map(string,string)

getEncodedMessage():vector(unsigned char)
setServiceRelatedValue():void
setNonTrackRelatedValues():void

AsterixCategoryBBB

AsterixCategoryBBB()

This class stands for
Categories 063 till
244

This class stands for
Categories 063 till
244

Figure 1: Asterix Category Class Diagram

3.2 Asterix Item Level

Looking down from the Asterix Category, the next level is the Asterix Item. Each Asterix Category consists of a defined set
of Asterix Items. Within the Asterix Category each Asterix Item is defined by its number of order. In addition the item
comes with a unique name. The uniqueness is not ensured by the item itself, but is up to the developer. The naming schema
in place is thee digits for the category the item is in, plus a slash, plus three digits for the item itself (e.g. 001/101). The
general architecture of the Asterix Items can be seen in Fig. 2.

As with the Asterix Categories there is a so called base item, which shall be the root parent to all individual Asterix Items.
It contains already the name, which is mandatory, along with the read function. This read function must be implemented by
the derived classes. The read function is supposed to digest the binary data that represents the item from the binary input
stream and to return only those bytes belonging to this item. Purpose of the item is not to interpret the binary data but
just to extract it from the message. Interpretation will be the workload of the Asterix Subitem classes.

From Fig. 2 it can be seen that a set of different Asterix Items already exists. These are all items currently defined in
[1]. There purpose, in what the architectural overview is concerned, will be be detailed in the paragraph below.

For every item, handling of the input data is different. There are Asterix Items where the length of the bytes to read is
known beforehand. Others are either a small Asterix Category with FSPEC and sub items in itself. And yet another kind is
of variable length of repeated length not known during compile time but calculated during runtime from the message itself.
The focus clearly was to bundle every item with equal byte reading into one class.

These ready to use Asterix Items are now added to the Asterix Category by populating the so called uap variable. The
Asterix Category Base class will then take care of calling the read function of the item as soon as the input data is available.
It will also take of presenting the input data to the Asterix Items in the way it would expect the data. This reduces the
task of implementing a new category basically to defining how the category looks like. Most of the reading, encoding and
decoding will then already be implemented by the parent class. Only in very view cases the developer might have the need
to override the behaviour of the parent class.

Page 2 Version: 0.1

Asterix Library Document ID: FixMPTS-AsterixLib-ADD

AsterixItem

#name:string
#length:int

AsterixItem()
readItem(buffer:deque(char)):deque(char)
getName():string

getLength():int

AsterixItemCompound

subitem uap:subUap T
sub fspec:vector(bool)

AsterixItemCompound()
getItemPresenceMap():map(string,bool)
isPresent(item:string):bool

Limited to the im-
portant member
and functions not
already inherited.
May not display all
function attributes.

Limited to the im-
portant member
and functions not
already inherited.
May not display all
function attributes.

AsterixItemCompoundLI

AsterixItemCompoundLI()

AsterixItemExtendible

repeated length:unsigned int

AsterixItemExtendible()

AsterixItemFixedLength

AsterixItemFixedLength()

AsterixItemRepetetive

item length:unsigned int
repetition factor:unsigned int

AsterixItemRepetetive()
getRepetitionFactor():unsigned int

AsterixItemVariableLength

AsterixItemVariableLength()

AsterixItemVariableLengthFlex

length of first item:sunigned int

AsterixItemVariableLengthFlex(name:string,
length:unsigned int)

Figure 2: Asterix Item Class Diagram

3.3 Asterix Sub-Item Level

Purpose of the Asterix Sub-Item is to provide the interpretation of the Asterix Item. The Asterix Items work on byte level,
whereas the Asterix Sub-Item work on bit level. Thus one Asterix Item can be comprised of several sub items. So the sub
item is the smallest level of granularity. The architectural structure the all available sub items can be found in Fig. 3.

AsterixSubitemBase

#encoded value:string
#encoded value:char
#raw value length:unsigned int
#length:int
simple converter:simpleConverter T
double conveter:function()

AsterixItem(length:int, converterFunction:simpleConverter T)
AsterixItem(length:int, converterFunction:function()
decode(input buffer:char, bit position:unsigned int):void
encode():vector(char)
getValue():string
getLength():int

AsterixSubitemBitNamed

value names:vector(char)

Limited to the im-
portant member
and functions not
already inherited.
May not display all
function attributes.

Limited to the im-
portant member
and functions not
already inherited.
May not display all
function attributes.

AsterixSubitemBytes AsterixSubitemCompound

subitems:subitem map t
unrolled values:map(string,string)

gerUnrolledValues():map(string,string)

AsterixSubitemNumber

#readBits(input buffer:deque(char), bit position:unsigned int):vector(bool)
getRawValue(result:vector(bool)):long
getConvertedValue(value:char, value length:unsigned int):string

AsterixSubItemRep

subitems:subitem map t
unrolled values:map(string,string)
repetition factor:unsigned short

gerUnrolledValues():map(string,string)

AsterixSubitemSigned AsterixSubitemUnsigned

Figure 3: Asterix Sub-Item Class Diagram

Again, the AsterixSubItemBase class provides all the functions and attributes common to all Asterix Sub-Items. As can
be seen from Fig. 3 this is the pace where the actual value is stored. After calling encode method, the encoded and ready to
use value is stored in encoded value variable. In order to get the interpretation of the raw bits right, it is important to define
the length of the item and its interpretation first. In interpretation of the raw data is defined by the means of converter
function, detailed in chapter 4.4. Depending on the complexity of the conversion this can either be a simple converter or a
double double converter. To convert the value even further into a human readable format, this is the place where the different
Sub-Item classes come into play.

The derived classes have two purposes. On is to define the way of reading the raw bits of the Asterix item and the other
is to define the human readable representation of the value.

3.4 Sub-Item Converter Functions

The converter are the means to translate the binary input data to the expected output format. There are converters for
nearly every aspect of the Asterix Protocol. They are grouped by the output type. Thus all conversions resulting in a floating

Page 3 Version: 0.1

Asterix Library Document ID: FixMPTS-AsterixLib-ADD

point number are currently grouped into the DoubleConveter. A detailed overview of what they provide will be presented in
the following sections. For all converter the design is to have all conversion methods static and to avoid having any state.
Thus the idea is to just provide the translation without anything on top.

3.4.1 Common Converter

The CommonConverter as shown in fig. 4 is the most basic converter available. Its sole purpose is to do nothing. It just
reads the input bits and converts them to a string. This converter is to used if no interpretation of the input data is required.

CommonConverter

+NoneConverter(value:char, value length:unsigned int):string
+NoneConverterBuffer(value:char, value length:unsigned int , dest buffer:double):string All methods are

static
All methods are
static

Figure 4: Common Converter

3.4.2 Double Converter

As visible from fig. 5, the DoubleConverter already provides a whole lot of functions. Its aim is to convert the input bits
into whatever double precision output is needed. It already contains static conversion functions for example for a quarter
flight level, various WGS84 converter, or fractional values. The details on how the different converter worked and what their
output will look like, can be found in the code documentation. The DoubleConverter class shall hold all converter functions
which have the output type double.

DoubleConverter

+fractionHalf(value:char, value length:unsigned int, dest buffer:double):string
+fraction4th(value:char, value length:unsigned int, dest buffer:double):string
+fraction6th(value:char, value length:unsigned int, dest buffer:double):string
+fraction8th(value:char, value length:unsigned int, dest buffer:double):string
+fraction64th(value:char, value length:unsigned int, dest buffer:double):string
+fraction128th(value:char, value length:unsigned int, dest buffer:double):string
+fraction256th(value:char, value length:unsigned int, dest buffer:double):string
+fraction10ToPower5(value:char, value length:unsigned int, dest buffer:double):string
+fraction10ToPower6(value:char, value length:unsigned int, dest buffer:double):string
+WGS84AltQuarter(value:char, value length:unsigned int, dest buffer:double):string
+WGS84resolution23Bit(value:char, value length:unsigned int, dest buffer:double):string
+WGS84resolution25Bit(value:char, value length:unsigned int, dest buffer:double):string
+WGS84resolution30Bit(value:char, value length:unsigned int, dest buffer:double):string
+WGS84resolution31Bit(value:char, value length:unsigned int, dest buffer:double):string
+WGS8490degResolution31Bit(value:char, value length:unsigned int, dest buffer:double

):string
+groundVectorAcceleration(value:char, value length:unsigned int, dest buffer:double

):string
+geoAltitudeFt(value:char, value length:unsigned int, dest buffer:double):string
+verticalRate(value:char, value length:unsigned int, dest buffer:double):string
+factor015(value:char, value length:unsigned int, dest buffer:double):string
+direction16Bit(value:char, value length:unsigned int, dest buffer:double):string

+elevation16Bit(value:char, value length:unsigned int, dest buffer:double):string

Set of converter
function taking a
double input needed
for Asterix related
de/enconding. All
methods are static.

Set of converter
function taking a
double input needed
for Asterix related
de/enconding. All
methods are static.

Figure 5: Double Converter

As this converter will deal with signed double values a dedicated converter for unsigned double values is presented in the
next section.

3.4.3 Unsigned Double Converter

In case the the converted value shall be of type double but the valid range is only within the positive number area, the
UnsignedDoubleConverter is the one to use. This is enforced by interpreting the input bits as unsigned number before
applying the conversion. Shown fig. 6 one can see all static converter functions already available. Most of them deal with
fraction of various input bit length.

Page 4 Version: 0.1

Asterix Library Document ID: FixMPTS-AsterixLib-ADD

UnsignedDoubleConverter

+circleSegment8Bit(value:char, value length:unsigned int, dest buffer:double):string
+circleSegment16Bit(value:char, value length:unsigned int, dest buffer:double):string
+direction13Bit(value:char, value length:unsigned int, dest buffer:double):string
+direction14Bit(value:char, value length:unsigned int, dest buffer:double):string
+direction16Bit(value:char, value length:unsigned int, dest buffer:double):string
+direction128th(value:char, value length:unsigned int, dest buffer:double):string
+directionHalfCircle8Bit(value:char, value length:unsigned int, dest buffer:double):string
+fraction4th(value:char, value length:unsigned int, dest buffer:double):string
+fraction10th(value:char, value length:unsigned int, dest buffer:double):string
+fraction32nd(value:char, value length:unsigned int, dest buffer:double):string
+fraction100th(value:char, value length:unsigned int, dest buffer:double):string
+fraction128th(value:char, value length:unsigned int, dest buffer:double):string
+fraction360th(value:char, value length:unsigned int, dest buffer:double):string
+fraction30Bit(value:char, value length:unsigned int, dest buffer:double):string
+selectedHeading(value:char, value length:unsigned int, dest buffer:double):string
+groundTrackHeading(value:char, value length:unsigned int, dest buffer:double):string
+speedNMToKt(value:char, value length:unsigned int, dest buffer:double):string
+speedVelToKt(value:char, value length:unsigned int, dest buffer:double):string
+airspeed14Bit(value:char, value length:unsigned int, dest buffer:double):string
+fact10(value:char, value length:unsigned int, dest buffer:double):string
+eRange(value:char, value length:unsigned int, dest buffer:double):string

Set of converter
function taking
a unsigned dou-
ble input needed
for Asterix related
de/enconding. All
methods are static.

Set of converter
function taking
a unsigned dou-
ble input needed
for Asterix related
de/enconding. All
methods are static.

Figure 6: Unsigned Double Converter

3.4.4 Integer Converter

For all input bits that are expected to be converted to SignedIntegers, the IntegerConverter class is the place to put them.
Fig. 7 shows the current static functions available. The details on the two currently available functions can be found in the
code documentation.

IntegerConverter

+lBitsToQuarter(value:char, value length:unsigned int):string
+alt25ft(value:char, value length:unsigned int):string

Set of converter
function taking a
integer input needed
for Asterix related
de/enconding. All
methods are static.

Set of converter
function taking a
integer input needed
for Asterix related
de/enconding. All
methods are static.

Figure 7: Integer Converter

3.4.5 String Converter

For the very few cases where the input bit cannot be converted directly into characters, the StringConverter exists. Visible
in fig. 8, it contains functions for output alphabets which do not necessarily follow the standard ASCII alphabet. The details
of the converter functions are available from the code documentation.

StringConverter

+to6BitChar(value:char, value length:unsigned int , dest buffer:double):string
+toASCII(value:char, value length:unsigned int , dest buffer:double):string
+BitsToNATOtn19Bit(value:char, value length:unsigned int , dest buffer:double):string

Set of converter
function taking a
string input needed
for Asterix related
de/enconding. All
methods are static.

Set of converter
function taking a
string input needed
for Asterix related
de/enconding. All
methods are static.

Figure 8: String Converter

Page 5 Version: 0.1

	Purpose
	Principles

	References
	Aprivations
	Functional Overview
	Asterix Category Level
	Asterix Item Level
	Asterix Sub-Item Level
	Sub-Item Converter Functions
	Common Converter
	Double Converter
	Unsigned Double Converter
	Integer Converter
	String Converter

